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THE BIGGER PICTURE Just as war makes every citizen into an amateur geographer and tactician, a
pandemic makes epidemiologists of us all. Instead of maps with colored pins, we have charts of exposure
and death counts; people on the street argue about infection fatality rates and herd immunity the way they
might have debated wartime strategies and alliances in the past. The severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2) pandemic has brought statistics and uncertainty assessment into public discourse
to an extent rarely seen except in election season and the occasional billion-dollar lottery jackpot. In this pa-
per, we reflect on our role as statisticians and epidemiologists and lay out some of the challenges that arise in
measuring and communicating our uncertainty about the behavior of a never-before-seen infectious disease.
We look at the problem from multiple directions, including the challenges of estimating the case fatality rate
(i.e., proportion of individuals who will die from the disease), the rate of transmission from person to person,
and even the number of cases circulating in the population at any time. We advocate for an approach that is
more transparent about the limitations of statistical and mathematical models as representations of reality
and suggest some ways to ensure better representation and communication of uncertainty in future public
health emergencies.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY

We discuss several issues of statistical design, data collection, analysis, communication, and decision-mak-
ing that have arisen in recent and ongoing coronavirus studies, focusing on tools for assessment and prop-
agation of uncertainty. This paper does not purport to be a comprehensive survey of the research literature;
rather, we use examples to illustrate statistical points that we think are important.
STATISTICS AND UNCERTAINTY

Just as war makes every citizen into an amateur geographer and

tactician, a pandemic makes epidemiologists of us all. Instead of

maps with colored pins, we have charts of exposure and death

counts; people on the street argue about infection fatality rates

and herd immunity the way they might have debated wartime

strategies and alliances in the past.

The severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) pandemic has brought statistics and uncertainty assess-

ment into public discourse to an extent rarely seen except in

election season and the occasional billion-dollar lottery jackpot.

Statistical claims become political claims and vice versa, with

political and ideological positions impacting how we interpret

the meaningfulness and uncertainty of statistical results.1 As

statisticians and epidemiologists, we attempt to contribute to
This is an open access article und
this discourse by laying out some of the challenges that arise

in assessing uncertainty and propagating it through statistical

analysis and decision-making. We consider several examples

and conclude with some general recommendations.

Statistics is key throughout the life cycle of a scientific proj-

ect, from design through data collection and analysis, and

ultimately through communication of results for policy recom-

mendations. In the case of a pandemic, such as SARS-CoV-2,

surveillance data are critical for assessment of current status

and for future projection, and clinical measurements are vital

for evaluating diagnostic tests and intervention efficacy.

Design includes sample size calculations, determination of

comparison groups and time horizons, and randomization,

and is critical in research to identify effective treatments and

vaccines. Analysis includes evaluation and estimation based

on clinical studies, as well as disease modeling studies, for
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forecasting and decision support. Communication includes

the challenge of drawing inferences and making decisions

based on a variety of models and data sources. Uncertainty

is present at each step.

DATA AND MEASUREMENT QUALITY

It is becoming painfully apparent that the numbers defining the

global burden of SARS-CoV-2 are at best uncertain and at worst

completely wrong. The bread and butter of disease surveil-

lance—cases and deaths—are both suspect, for reasons that

are only beginning to be fully understood. Studies that rely on

these as inputs, for example, for estimating transmission dy-

namics or case fatality rates, have commonly made the mistake

of considering these numbers as a given (and reliable) and do not

account for uncertainty or bias in reporting.

Incidence, prevalence, and mortality
There has been some compelling reporting on how the number of

deaths reported in the first few months of the pandemic far ex-

ceeds what would have been expected at that time of the year,

particularly in states, such as New York, along with analysis of

poor alignment between burden and testing.2 There has also

been good reporting about the confusion arising from differences

across states in reporting of COVID-19-related deaths.3 Some

states have changed how they classify deaths due to COVID-

19, leading to potential increases in death counts in some cases

(e.g., by including suspected and confirmed SARS-CoV-2 infec-

tions in Michigan) and reductions in death counts in others (e.g.,

Colorado’s removal of individuals with COVID-19 at the time of

death but for which COVID-19 was not the attributed cause of

death from the official COVID-19 death count).4,5

One big question in the early phases of the pandemic was un-

derstanding how changes in test availability and distribution both

between regions and groups, and over time (for example, as a

result of inadequate infrastructure and reagent shortages),

impacted our measurements of incidence, prevalence, andmor-

tality, conditional on age and other demographic variables. As

the pandemic has worn on and the political and economic costs

of high SARS-CoV-2 caseloads have become clear, these issues

remain but have shifted from supply considerations to more so-

cial ones. For example, political and economic calculations

appear to have impacted the accuracy of reporting of nursing

home deaths in New York State and may have contributed to a

decline in asymptomatic surveillance testing in some states.6,7

Since progress in the pandemic in the US has often been as-

sessed using state-to-state comparisons, this has likely led to

erroneous conclusions about what works and what does not,

as well asmisrepresenting the overall trajectory of the pandemic.

Missing data can also have serious implications formaking be-

tween-group comparisons. For example, recent work has shown

that race/ethnic disparities in COVID-19 incidence and mortality

are likely to be dramatically underestimated in complete-case

analyses when cases missing race/ethnicity are dropped.8 This

suggests that the horrific disparities in COVID-19 incidence

and mortality are likely even larger than those reported in schol-

arly research and administrative reports. It could be possible to

leverage missingness of key covariates. For example, death cer-

tificates typically have more complete information on race/
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ethnicity than case reports, and a joint model could allow us to

efficiently marginalize over these missing covariates, which in

preliminary work reveals disparities in mortality that are consid-

erably greater than when these data are dropped. Here, we are

using census data to inform the probability that people who

are missing race/ethnicity data will be in the mortality versus

case-only data.

One way to address data quality is to triangulate. In a clinical

study, a hospital can perform antibody tests and RT-PCR RNA

tests on patients. In a study tracking symptoms, data can be

collected from multiple sources, as in the Carnegie Mellon proj-

ect, which tracks Facebook and Google surveys, hospital re-

cords, web searches, and flu tests.9 When measurements

cannot be easily calibrated, inferences can be sensitive to as-

sumptions; for example, results of the controversial Stanford

antibody study were dependent on assumptions about the

sensitivity and specificity of the test.10,11 One additional chal-

lenge is the communication of uncertainty in these tests: there

is a desire to imagine that the binary test results are conclusive

one way or the other instead of essentially representing a prob-

abilistic statement about whether an individual is infected

or not.

Transmission dynamics
These issues are no less pronounced when contemplating pop-

ulation-level transmission dynamics. The basic reproduction

number, R0, and its cousin the effective reproduction number,

R, which measures the actual number of infections generated

by an average case, are often cited as measures of inter-human

transmissibility and epidemic control. However, it is easy to

forget that R0and R are not empirical quantities. They are esti-

mated on the basis of surveillance data, which as noted above,

is not as reliable as we might wish to believe. In addition, R is a

function of (1) the per-contact infectiousness of each individual

and (2) the rate at which those contacts occur. Reduce either

or both of these and you are likely to reduce the rate of spread.

In addition, both measures represent average estimates of a

parameter subject to between-individual and temporal variation,

due, for example, to variable compliance with social distancing

efforts, variation in the extent of viral shedding or age-specific

differences in contact and infectiousness. This variation is widely

understood in infectious disease epidemiology, and there are

theoretical and statistical modeling frameworks that allow us to

account for inter-individual variability in susceptibility and infec-

tiousness.

Drivers of variation in infectiousness and susceptibility at an in-

dividual or population level can be studied using a hierarchical

approach. In this area, there are at least three key dimensions

of uncertainty that we need to consider: (1) What range of values

of the average infectiousness is consistent with the observed

data? (2) How much between-individual variation is there in

infectiousness/susceptibility, and how much does it matter to

address it specifically? (3) If we implement an intervention to

reduce the value of R0, how can we estimate howwell it worked?

The Imperial College group has fit some reasonable models

trying to untangle effects of different policies on the spread of co-

ronavirus, making use of variation in space and time of the

growth rates of the infection, and similar issues arise with varia-

tion in vaccine uptake.12,13
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DESIGN OF CLINICAL TRIALS FOR TREATMENTS AND
VACCINES

Part of designing a study is accounting for uncertainty in effect

sizes. Unfortunately there is a tradition in clinical trials of making

optimistic assumptions to claim high power. Here is an example

that came up inMarch, 2020. A doctor was designing a trial for an

existing drug that he thought could be effective for high-risk co-

ronavirus patients. He contacted one of us to check his sample

size calculation: under the assumption that the drug increased

survival rate by 25 percentage points, a sample size of N = 126

would assure 80% power. (With 126 people divided evenly in

two groups, the standard error of the difference in proportions

is bounded above byO(0.5*0.5/63 + 0.5*0.5/63) = 0.089, so an ef-

fect of 0.25 is at least 2.8 standard errors from zero, which is the

condition for 80% power for the z-test.) When we asked the doc-

tor how confident he was in his guessed effect size, he replied

that he thought the effect on these patients would be higher

and that 25 percentage points was a conservative estimate. At

the same time, he recognized that the drug might not work.

We asked the doctor if he would be interested in increasing his

sample size so he could detect a 10 percentage point increase

in survival, for example, but he said that this would not be

necessary.

It might seem reasonable to suppose that a drug might not be

effective but would have a large individual effect in case of suc-

cess. But this vision of uncertainty has problems. Suppose, for

example, that the survival rate was 30% among the patients

who do not receive this new drug and 55% among the treatment

group. Then in a population of 1,000 people, it could be that the

drug has no effect on the 300 of people who would live either

way, no effect on the 450 who would die either way, and it would

save the lives of the remaining 250 patients. There are other pos-

sibilities consistent with a 25 percentage point benefit—for

example, the drug could save 350 people while killing 100—

but we will stick with the simple scenario for now. In any case,

the point is that the posited benefit of the drug is not "a 25 per-

centage point benefit" for each patient; rather, it is a benefit on

25% of the patients. And, from that perspective, once we have

accepted the idea that the drug works on some people and

not others—or in some comorbidity scenarios and not others—

we realize that "the treatment effect" in any given study will

depend entirely on the patient mix. There is no underlying num-

ber representing the effect of the drug. Ideally one would like to

know what sorts of patients the treatment would help, but in a

clinical trial it is enough to show that there is some clear average

effect. Our point is that, if we consider the treatment effect in the

context of variation between patients, this can be the first step in

a more grounded understanding of effect size.

Many other issues arise when considering clinical trial designs

in a pandemic, most notably balancing the goal of reducing un-

certainty about the treatment effect and the goal of getting a

treatment or vaccine into the population as soon as possible.

We recommend that policymakers attempt to quantify the po-

tential risks and benefits of early or late decisions in the design

stage, rather than relying on power calculations based on statis-

tical significance.

One issue that arises is what to make of different vaccine effi-

ciency estimates coming from studies conducted at different
points in time, in different contexts, and potentially with a differ-

ential mix of pathogens floating around? The estimates that are

commonly reported refer to symptomatic infection. For the pur-

poses of arresting the toll of mortality in the COVID-19 pandemic,

it is most important that vaccines prevent severe disease and

death. From this perspective, all the available options do a

good job. Arguably this is the number that should be emphasized

for the public.
DISEASE TRANSMISSION MODELS

Infectious disease transmission models have been held to un-

precedented and deserved scrutiny during the COVID-19 crisis.

The field of infectious diseasemodeling finds its roots in the work

of Ross14 on malaria, using mathematical tools to describe the

complex relations between parasites, vectors, and hosts. Ross

defined the concept of dependent happenings, whereby the fre-

quency of an event, such as an infection in an individual, de-

pends on the number of individuals already affected.15 Kermack

and McKendrick16 formalized this approach, leading to the

development of the SIR (susceptible-infectious-recovered) dif-

ferential equation system that is still the basis of many of the

models used for SARS-CoV-2 today. In the SIR model, the pro-

cesses of contagion and immunity are modeled following the

mass action principle: the incidence of new infections is depen-

dent on the proportion of infectious and susceptible individuals

in the population, assuming homogeneous mixing. In the

following decades, the field of infectious disease modeling has

seen tremendous development but has long been kept sepa-

rated from statistical modeling and inference. The focus was

on putting theory into equations and exploring different sce-

narios, leading to important developments in the development

and understanding of interventions aimed at controlling epi-

demics, such as vaccines or vector control. Until recently,

comparatively less attention has been given to statistical con-

cepts, such as inference, measurement, and uncertainty.

Several types of approaches have been used to model the

transmission of SARS-CoV-2, depending on the stage of the

epidemic and the objectives of the work.

Whether the objective of a model is inference, forecasting, or

intuition-building, the handling of uncertainty should be a central

concern. We can distinguish three sources of uncertainty:

1. Stochastic uncertainty arises from chance events during the

course of transmission (whether a contact between an infec-

tious and a susceptible person will result in transmission) or

data generation (sampling variation in infected individuals

that are reported as cases).

2. Parameter uncertainty represents the imperfect level of

knowledge of a particular quantity, such as the average dura-

tion of the incubation period, which is a fixed input parameter

to most transmission models.

3. Model (or structural) uncertainty refers to the set of assump-

tions underlying any modeling attempt and their adequacy

to reality.17 To avoid overconfidence, especially when results

are expected to impact policy, one should acknowledge and

discuss the potential impact of each of these sources of un-

certainty, and as often as possible directly propagate the un-

certainty into the results.
Patterns 2, August 13, 2021 3
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Case example: Estimating transmission rates from early
reports
In the early stages of the emergence of SARS-CoV-2 in Wuhan,

China, a key focus was estimating the basic reproduction num-

ber R0 from data on reported cases of SARS-CoV-2 infection. R0

is defined as the average number of secondary cases that are

generated by an infectious individual in a fully susceptible popu-

lation. In the first few weeks after its emergence, it was reason-

able to assume that the population was fully susceptible to

SARS-CoV-2 infection, allowing the use of simple models based

on branching processes or exponential growth. Estimating

R0from counts of reported cases constitutes a typical inference

problem and must account for important considerations

regarding stochastic, parameter, and model uncertainty.

Stochastic uncertainty
In the context of emerging pathogens, stochastic uncertainty

can be important and, at the stage at which few people are

affected, any outlier behavior can have a strong impact on the

course of the disease. One key component here is the assumed

distribution in the number of secondary cases. In a totally sus-

ceptible population, its average is by definitionR0, but this can

vary from individual to individual, with the extreme being a super-

spreading event (defined as an unusually large number of sec-

ondary cases generated by a single infectious person). Super-

spreading events can have a considerable impact in the early

stages of disease emergence by accelerating the spatial spread

of the pathogen, as was seen during the emergence of Middle

East respiratory syndrome coronavirus.18 Two introductions of

the same pathogen with the same transmissibility (i.e., with the

same R0) can result in vastly different epidemic trajectories.

Consequently, it would be a mistake to overinterpret differences

in case counts across countries or areas as differences in trans-

missibility, especially when the number of cases is small. Simi-

larly, the uncertainty stemming from low case rates constrains

the ability to make informative comparisons across time and

space, for instance, to identify the causal impact of specific miti-

gation measures or environmental drivers, such as temperature

or air pollution.19 Individual heterogeneity and the potential for

superspreading events can be accounted for using a negative

binomial distribution for modeling the number of secondary

cases.20

Parameter uncertainty
Examining the mechanisms leading to the generation of count

data gives insight about the basic assumptions that will explicitly

or implicitly be part of any attempt at parameter estimation: (1) an

initial zoonotic event led to the infection of a number of humans

on a given date; (2) each of these cases generated secondary

cases (R0 cases on average, with a distribution as discussed

above); (3) each of these secondary cases generated cases,

with a delay that corresponds to the generation time (the gap be-

tween two successive generations of cases, which also is a

random variable, not a constant); (4) infected cases will have

an incubation period, some of the cases will have symptoms,

some of the symptomatic cases will seek care, some of the pa-

tients will be tested and diagnosed, some of the diagnosed will

be reported to the authorities and counted as a case. From these

observations, we understand that is not possible to estimate at
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the same time R0, the date and size of the initial zoonotic event,

the incubation period, and the generation time from information

about the incidence of SARS-CoV-2, as several combinations of

these parametersmay lead to the same data. To estimateR0, it is

therefore necessary to incorporate external information about

the other parameters. Here enters parameter uncertainty, as

overconfidence about the initial conditions or the generation

time could result in both systematic bias in estimation and over-

confidence—not enough uncertainty—about the value of R0.

Model uncertainty
Thinking about themechanisms of data generation brings further

considerations about model uncertainty. As of April 2021, much

remains unknown about the specific factors, timing and location

of the emergence of SARS-CoV-2 at the end of 2019.21 Putting

aside any political aspect, the early phase of emergence of an

unknown pathogen is always a chaotic matter, and modeling

the transmission of SARS-CoV-2 and other emerging pathogens

requires strong assumptions about how the data were gener-

ated. For instance, some authors took the number of reported

cases in Wuhan in the first few weeks at face value and directly

inferred the rate of exponential growth and thus R0, implicitly

assuming that the proportion of ascertainment (the proportion

of cases that end up in the data) was constant over the period

considered.22,23 Other authors made explicit assumptions about

the shape of variation of ascertainment with time.24 Rather than

making assumptions about ascertainment in Wuhan, other au-

thors preferred to use data on national and international cases

of SARS-CoV-2 identified in areas still unaffected by the turmoil

together with traffic data.25–27 However, this approach carries

other assumptions about the representativity of people who trav-

eled from Wuhan to other places. Differences across estimates

based on different assumptions may be referred to as model un-

certainty, and this in itself is a good reason to consider multiple

approaches to study the same issue.

Accounting for nonstationarity
Beyond the first few weeks following emergence, it becomes

more and more implausible to ignore the impact on transmission

of disease-related behavior and the accumulation of protective

immunity in the population. Whether the objective is prediction

or inference, it is essential to account for how behavior and other

factors contributing to transmission—and observation—may

change over time. The two broad categories of transmission

models typically employed can be adapted to this task, but it in-

creases challenges of model identifiability and interpretability.

Agent-based models can be used to simulate the detailed

behavior and biology of each individual, going as far as to simu-

late every vehicle moving in a country.28 These models can pro-

vide useful insight but are often difficult or impossible to fit to

data. In contrast, compartmental models divide the population

into different states (susceptible, infectious, and removed for

the classical SIR model), without considering any difference

among individuals within a state.

Compartmental modelsmay be consideredwithin a stochastic

or a deterministic framework. The stochastic framework con-

siders the probability of occurrence of each event at each time

step and, as hinted by its name, is better suited to handle sto-

chastic uncertainty. The deterministic framework relies upon



Table 1. Summary of the different sources of uncertainty and

recommendations on how to address them

Source of

uncertainty Interpretation Recommendations

Stochastic

uncertainty

chance events

in data-

generating

mechanisms

- acknowledge variability at all

levels by using appropriate

probability distributions

- present the entire range of

possible predictions arising

from the fitted model rather

than measures of statistical

significance

Parameter

uncertainty

imperfect

knowledge of

influential

quantities

- propagate uncertainty from

parameters through the results

and predictions

- make use of Bayesian

hierarchical models to partially

pool information across

individuals, locations, and other

units of analysis

Model

uncertainty

set of

assumptions

underlying the

model

- maximize transparency with

open code and public release

of data to allow replication

- pre-register modeling

assumptions in advance of

analysis

- compare the inferences and

predictions of multiple plausible

models rather than searching

for the ‘‘one true model’’
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solving systems of ordinary differential equations (ODEs) and

leads to the same average results when the number of infected

is sufficiently large. The reduction in computational cost associ-

ated with solving ODEs instead of simulating a large number of

events is important when the objective is inference.29

Alternative approaches. A third, hybrid approach was devel-

oped by the Institute for Health Metrics and Evaluation (IHME),

fitting a Gaussian curve to the shape of the epidemic’s

mortality trajectory, estimating how restrictions, including social

distancing enacted in China impacted the time to and height of

the peak, and then extrapolating to other settings on the basis

of their accumulating mortality data. The assumption of symme-

try in the rise and fall of cases, coupled with the rapid rise in

cases and deaths in almost every region, meant that the IHME

model predicted a much more rapid decline than other

models.30,31 As the virus spread across the US, problems with

the model became clear, and the IHME replaced it with a hybrid

empirical compartmental approach.

Following this and other failed attempts at prediction, people

have mostly given up on forecasting the incidence of COVID-

19 beyond a few weeks. While transmission models bring impor-

tant insights about the general dynamics of an epidemic (e.g.,

concepts, such as herd immunity, vaccine threshold, and final

epidemic size), after a year in it is now more widely understood

that the incidence of COVID-19 cases and deaths at a given

time and place depends on toomany converging factors to allow

useful forecasting. These factors range from diversity in the viral

population, potential seasonality in transmissibility and contact,

to variations in risk perception, care-seeking behavior, and vac-
cine uptake that can in turn be influenced by age, education, and

socio-economic status. To some extent, this represents some-

thing of a bright spot, or at least a lesson learned about the limits

of models and data as tools for decision-making in a complex,

fast-moving situation.
How can we make better use of models to measure and
manage uncertainty?
None of this is an argument against using transmissionmodels to

look at potential epidemic trajectories; rather we are arguing for

greater transparency and humility in making projections. Exam-

ples of how to accomplish this include the following recommen-

dations, summarized in Table 1:

Model-based predictions should incorporate stochastic un-

certainty by including prediction intervals in addition to point

estimates. For time series predictions, visualizations of entire

trajectories using tools, such as spaghetti plots, showing the

impact of propagating uncertainty throughout the run of amodel,

should be preferred over simply plotting the intervals over time.

Parameter uncertainty should directly be propagated in the re-

sults. The quantification of uncertainty in the model outcomes is

an integral part of the results and should not be relegated to the

side as sensitivity analyses. In this regard, the Bayesian frame-

work with its focus on parameter probability distributions is

attractive.

Model uncertainty can be handled by carefully considering

whether the model structure and all relevant assumptions

(even implicit) are adapted to the question as well as using tech-

nical tools, such as stacking.32 Conducting sensitivity analyses

with alternative models is always sensible, but there is only so

much than a team can do about its own model. It is advisable

to rely on other researchers and experts to provide critical

assessment of the model by releasing code and data on an

appropriate platform. Model uncertainty is best assessed by

the community, and this requires transparency. Code sharing

will also bring to academiamuch-needed good practices for pro-

gramming, and in the long run build more confidence in the field

of infectious disease modeling. Ideally, this process of collective

validation would take place before new emergencies occur, in

some sort of disaster model pre-registration. Disease transmis-

sion models are often not entirely disease specific but rather

have defining features that relate to the modes of transmission

and immunization. This appears in the profound influence that

influenza models and other SEIR-like models had over models

applied to the SARS-CoV-2 pandemic.
MULTILEVEL STATISTICAL MODELING

So far, we have discussed accounting for uncertainty in research

design, data collection, and transmission modeling during epi-

demics. In addition, data analysis using regression and regres-

sion-like models can account for uncertainty and variation using

multilevel modeling all the way, and decision-making can be

based on costs and benefits estimated using model outputs,

and not statistical significance. We have relatively little to say

about statistical analysis of this sort because this is one area in

which there are readily available tools to handle uncertainty

and variation.
Patterns 2, August 13, 2021 5
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We are aware of several SARS-CoV-2 analyses that make use

of multilevel models and Bayesian inference. The report by Un-

win et al.12 is an analysis by the Imperial College group that

partially pools across US states, and they have presented similar

analyses for Europe.33,34 Zelner et al.35 used a multilevel

approach to capture age-specific and race-ethnic variation in

SARS-CoV-2 mortality in Michigan. A partial list has been

collected of SARS-CoV-2 projects using the Bayesian inference

engine Stan.36 Bayesian analysis can also be performed in the

data collection stage, allowing more efficient designs.37

A challenging issue with statistical models fit during an

ongoing epidemic is dealing with unobserved or partially

observed data. Well-designed dynamic models that account

for time-varying observation processes can deal with some of

these issues, but approaches for fitting stochastic dynamic

models to partially observed time series data, such as the

partially observed Markov process framework,38 are typically

more computationally and technologically challenging than

more familiar regression-like approaches for fitting deterministic

models. As a result, deterministic models have had wide influ-

ence, despite their weaknesses and often in situations where de-

mographic stochasticity of the transmission process should be

accounted for.

Somewhat ironically, early statistical inferences for epidemic

models were actually rooted in a stochastic approach known

as the TSIR (time series SIR) model which was originally used

to account for time-varying birthrates and demographic sto-

chasticity in models of measles transmission.39 An appealing

aspect of the TSIR is that it is just a transformation of a regression

model and so is accessible to researchers and policymakers

with statistical training. Unfortunately, due to the data prepara-

tion required to fit them, TSIR models are most useful for the

analysis of strongly immunizing infections, such as measles, in

which the susceptible population can be accurately recon-

structed using data on birthrates and historical measles inci-

dence. As a result, for other infections characterized by different

dynamics, more complex and technically challenging ap-

proaches, such as the aforementioned partially observed Mar-

kov process framework, have become useful.

COMMUNICATION

To effectively communicate the results of analyses conducted

during the pandemic, what they are meant to accomplish needs

to be clear. In the context of the COVID-19 pandemic, this raises

the problem of effective scientific communication to the central

place it has always belonged. This includes communication of

key dimensions of uncertainty in risk.40 One of the key challenges

here is familiar: How does one impart a gestalt understanding of

an interval statistic, such as a confidence or credible interval, to

as broad of an audience as possible? van der Bles et al.41 pro-

vide evidence that people recognize uncertainty when presented

as an interval and that communicating this openly does not un-

dermine trust in the numbers or message, with verbal expres-

sions of uncertainty being less effective. Another challenge re-

lates to communication of the different ways in which

uncertainty arises and the difficulty of picking one apart from

another. For example, what do we do when we cannot disen-

tangle process noise, observation noise, and observation bias?
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We recommend more emphasis on accurately communicating

uncertainty in model inferences and predictions, as discussed

by Hullman et al.42

Much of the controversy surrounding themultiple transmission

models used for prediction and planning could be mitigated by a

more pragmatic reframing of what these—and all mathematical

and statistical models—are all about. Namely, they distill as-

sumptions and data into inferences for outcomes of interest. Un-

derstood this way, they are primarily tools for dimension reduc-

tion and exploration, rather than divining rods.

One thing we keep hearing in conversations with state govern-

ment officials is a concern that people just do not understand

when they are at risk. Maps and other visuals can give a realistic

and visceral sense of what that risk looks like. Many questions of

science communication arise here that relate specifically to the

translation of theory into models and models into spoken and

written language.43 Also relevant whenmapping science into de-

cisions is what Blastland et al.44 call "evidence communication,"

where the goal is not to convince or nudge people to act in a

particular way but rather to "offer evidence in the round" by

conveying estimated quantitative benefits and harms, including

numerical uncertainty measures, and anticipating and respond-

ing to potential areas of confusions.

Another problem relates to the communication of uncertainty

in the structure of the models themselves. We have seen an

appetite both from the public and from modelers themselves to

find the one true model, with the George Box quote proclaiming

that ‘‘all models are wrong’’ (which, like the term "social

distancing," we hope never to hear again after this year) tacked

on to papers and talks as a fig leaf. But we believe the only way

forward is to truly metabolize this argument: What if the chal-

lenges and failures of prediction and forecasting in this

pandemic are not to be overcome by more elbow grease and in-

genuity, but instead require moving the inferential and predictive

goalposts to better align with what the available data can tell us?

INFORMATION AGGREGATION AND DECISION-MAKING

In addition to quotidian difficulties of accounting for uncertainty

that have occupied statisticians and epidemiologists for hun-

dreds of years, the pandemic setting adds challenges of ur-

gency, novelty, high stakes, and nonstop change.

There has been vigorous debate in the newsmedia, social me-

dia, and governments regarding possible future paths of the

epidemic and how best to mitigate it. One thing that troubled

us in the earliest phases of the pandemic response was the

emphasis on rapid analysis of complex, incomplete datasets,

followed by rapid publication and extensive media coverage.

Rapid response is not inherently problematic, but the conjuring

of theoretical frameworks and analytic tools on the fly is unlikely

to benefit many more people than the authors of the study.

Instead, this makes more sense when you have an existing

framework and set of tools that you can apply with minor modi-

fications to incoming data, as was the case with a number of

groups enlisted in the earliest days of the pandemic, including

IHME as well as Imperial and other groups.

This leads us to wonder whether some kind of disaster model

pre-registration is in order for future events, so that the generic

behavior of the set of potential tools is well understood before
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being pressed into services. This could be looser than a clinical

trial registration but at least gives the key data inputs and outputs

and some characterization of expected behavior under different

scenarios. Critically, some type of standardization would give the

ability to engineer connections between different types of ana-

lyses, so that information on, for example, variable PCR testing

across geographic areas and demographic groups, can be

easily used to inform estimates of disease incidence and prev-

alence.

This takes us back to the motivating question behind this

essay: How can we adequately account for uncertainty in a

pandemic? The question is probably better reframed as: How

can we be better prepared to address the uncertainty inherent

in the response to the next pandemic or another catastrophic,

unforeseen—but foreseeable—event. An answer to this question

may lie in a reimagining of the tools of epidemiological modeling

from something that looks a bit more like the engineering

perspective and a bit less like the "pure science" perspective.

This entails a move away from analyses as one-off exercises

that uncover some permanent—or at least durable—truth, to-

ward a more software-like, continuous improvement conception

of the products of statistical analysis.
ACKNOWLEDGMENTS

We thank Nina Masters and three anonymous reviewers for helpful comments
and the U.S. National Science Foundation for grant 2055251. J.Z. was sup-
ported by awards from the U.S. Centers for Disease Control and Prevention
(no. U01IP001138-01) and the Simons Foundation. We thank Rob Trangucci
for preliminary analysis of death certificate data.

REFERENCES

1. Kreps, S.E., and Kriner, D.L. (2020). Model uncertainty, political contesta-
tion, and public trust in science: evidence from the COVID-19 pandemic.
Sci. Adv. 6, eabd4563.

2. Lieberman-Cribbin, W., Tuminello, S., Flores, R.M., and Taioli, E. (2020).
Disparities in COVID-19 testing and positivity in New York City. Am. J.
Prev. Med. 59, 326–332.

3. Harmon, A. (2020). Why we don’t know the true death rate for Covid-19.
https://www.nytimes.com/2020/04/17/us/coronavirus-death-rate.html.

4. Hicks, J.P. (2021). What are ’probable’ coronavirus cases and why are
they still increasing in Michigan? Mlive.com. https://www.mlive.com/
public-interest/2021/01/what-are-probable-coronavirus-cases-and-why-
are-they-still-increasing-in-michigan.html.

5. Colorado Department of Public Health & Environment. (2020). State ex-
plains COVID-19 death data reporting. https://covid19.colorado.gov/
press-release/state-explains-covid-19-death-data-reporting.

6. Cohrs, R. (2021). Cuomo’s nursing home fiasco shows the ethical perils of
policymaking. STAT. News https://www.statnews.com/2021/02/26/
cuomos-nursing-home-fiasco-ethical-perils-pandemic-policymaking/.

7. Martı́nez, A.R. (2021). A decline in testing may be masking the spread of
the virus in some U.S. states. New York Times https://www.nytimes.
com/2021/04/01/us/coronavirus-testing-declines.html.

8. Labgold, K., Hamid, S., Shah, S., Gandhi, N.R., Chamberlain, A., Khan, F.,
Khan, S., Smith, S., Williams, S., Lash, T.L., and Collin, L.J. (2021). Esti-
mating the unknown: greater racial and ethnic disparities in COVID-19
burden after accounting for missing race and ethnicity data. Epidemiology
32, 157–161.

9. Rosenfeld, R., Tibshirani, R., Brooks, L., Farrow, D., Jahja, M., Rumack, A.,
Tang, J., and Clark, B. (2020). COVIDcast. https://covidcast.cmu.edu/
index.html.
10. Bendavid, E., Mulaney, B., Sood, N., Shah, S., Ling, E., Bromley-Dul-
fano, R., Lai, C., Weissberg, Z., Saavedra-Walker, R., Tedrow, J.,
et al. (2020b). COVID-19 antibody seroprevalence in Santa Clara
County, California. https://www.medrxiv.org/content/10.1101/2020.
04.14. 20062463v2.full.pdf.

11. Gelman, A., and Carpenter, B. (2020). Bayesian analysis of tests with un-
known specificity and sensitivity. J. R. Stat. Soc. C 69, 1269–1284.

12. Unwin, H.J.T., Mishra, S., Bradley, V.C., Gandy, A., Vollmer, M., Mellan, T.,
Coupland, H., Ainslie, K., Whittaker, C., Ish-Horowicz, J., et al. (2020).
Report 23: State-Level Tracking of COVID-19 in the United States (Imperial
College London). https://mrc-ide.github.io/covid19usa/#/.

13. Lash, N. (2021). Will we struggle to reach herd immunity? New York
Times https://www.nytimes.com/interactive/2021/03/26/opinion/vaccine-
hesitancy-deserts-oases.html.

14. Ross, R. (1910). The Prevention of Malaria (John Murray).

15. Halloran, M.E. (1991). Study designs for dependent happenings. Epidemi-
ology 2, 331–338.

16. Kermack, W.O., and McKendrick, A.G. (1927). Contributions to the math-
ematical theory of epidemics. Philos. Trans. R. Soc. Lond. 115, 700–721.

17. Draper, D. (1995). Assessment and propagation ofmodel uncertainty. J. R.
Stat. Soc. B 57, 45–70.

18. Kucharski, A.J., and Althaus, C.L. (2015). The role of superspreading in
Middle East respiratory syndrome coronavirus (MERS-CoV) transmission.
Eurosurveillance 20, 14–18.

19. Rohrer, M., Flahault, A., and Stoffel, M. (2020). Peaks of fine particulate
matter may modulate the spreading and virulence of COVID-19. Earth
Syst. Environ. 4, 789–796.

20. Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., and Getz, W.M. (2005).
Superspreading and the effect of individual variation on disease emer-
gence. Nature 438, 355–359.

21. Maxmen, A. (2021). WHO report into COVID pandemic origins zeroes in on
animal markets, not labs. Nature 592, 173–174.

22. Majumder, M., and Mandl, K.D. (2020). Early transmissibility assessment
of a novel coronavirus in Wuhan, China. https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=3524675.

23. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung,
K.S.M., Lau, E.H.Y., Wong, J.Y., et al. (2020). Early transmission dynamics
in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J.
Med. 382, 1199–1207.

24. Zhao, S., Lin, Q., Ran, J., Musa, S.S., Yang, G.,Wang,W., Lou, Y., Gao, D.,
Yang, L., and He, D. (2020). Preliminary estimation of the basic reproduc-
tion number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020:
a data-driven analysis in the early phase of the outbreak. Int. J. Infect. Dis.
92, 214–217.

25. Read, J.M., Bridgen, J.R.E., Cummings, D.A.T., Ho, A., and Jewell, C.P.
(2020). Novel coronavirus 2019-nCoV: early estimation of epidemiological
parameters and epidemic predictions. https://www.medrxiv.org/content/
10.1101/2020.01.23.20018549v1.full.pdf.

26. Riou, J., and Althaus, C.L. (2020). Pattern of early human-to-human trans-
mission of Wuhan 2019 novel coronavirus (2019-nCoV). Eurosurveillance
25, 2000058. https://www.eurosurveillance.org/content/10.2807/1560-
7917.ES.2020.25.4.

27. Imai, N., Cori, A., Dorigatti, I., Baguelin, M., Donnelly, C.A., Riley, S.,
and Ferguson, N.M. (2020). Report 3: Transmissibility of 2019-nCoV
(Imperial College London). https://www.imperial.ac.uk/media/imperial-
college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-
transmissibility-25-01-2020.pdf.

28. Abhari, R.S., Marini, M., and Chokani, N. (2020). COVID-19 epidemic in
Switzerland: growth prediction and containment strategy using artificial in-
telligence and big data. https://www.medrxiv.org/content/10.1101/2020.
03.30.20047472v2.

29. Grinsztajn, L., Semenova, E., Margossian, C.C., and Riou, J. (2020).
Bayesian workflow for disease transmission modeling in Stan. https://
arxiv.org/abs/2006.02985.
Patterns 2, August 13, 2021 7

http://refhub.elsevier.com/S2666-3899(21)00153-7/sref1
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref1
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref1
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref2
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref2
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref2
https://www.nytimes.com/2020/04/17/us/coronavirus-death-rate.html
https://www.mlive.com/public-interest/2021/01/what-are-probable-coronavirus-cases-and-why-are-they-still-increasing-in-michigan.html
https://www.mlive.com/public-interest/2021/01/what-are-probable-coronavirus-cases-and-why-are-they-still-increasing-in-michigan.html
https://www.mlive.com/public-interest/2021/01/what-are-probable-coronavirus-cases-and-why-are-they-still-increasing-in-michigan.html
https://covid19.colorado.gov/press-release/state-explains-covid-19-death-data-reporting
https://covid19.colorado.gov/press-release/state-explains-covid-19-death-data-reporting
https://www.statnews.com/2021/02/26/cuomos-nursing-home-fiasco-ethical-perils-pandemic-policymaking/
https://www.statnews.com/2021/02/26/cuomos-nursing-home-fiasco-ethical-perils-pandemic-policymaking/
https://www.nytimes.com/2021/04/01/us/coronavirus-testing-declines.html
https://www.nytimes.com/2021/04/01/us/coronavirus-testing-declines.html
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref8
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref8
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref8
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref8
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref8
https://covidcast.cmu.edu/index.html
https://covidcast.cmu.edu/index.html
https://www.medrxiv.org/content/10.1101/2020.04.14.%2020062463v2.full.pdf
https://www.medrxiv.org/content/10.1101/2020.04.14.%2020062463v2.full.pdf
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref11
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref11
https://mrc-ide.github.io/covid19usa/#/
https://www.nytimes.com/interactive/2021/03/26/opinion/vaccine-hesitancy-deserts-oases.html
https://www.nytimes.com/interactive/2021/03/26/opinion/vaccine-hesitancy-deserts-oases.html
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref14
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref15
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref15
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref16
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref16
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref17
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref17
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref18
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref18
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref18
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref19
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref19
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref19
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref20
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref20
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref20
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref21
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref21
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3524675
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3524675
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref23
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref23
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref23
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref23
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref24
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref24
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref24
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref24
http://refhub.elsevier.com/S2666-3899(21)00153-7/sref24
https://www.medrxiv.org/content/10.1101/2020.01.23.20018549v1.full.pdf
https://www.medrxiv.org/content/10.1101/2020.01.23.20018549v1.full.pdf
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.4
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.4
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-transmissibility-25-01-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-transmissibility-25-01-2020.pdf
https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-transmissibility-25-01-2020.pdf
https://www.medrxiv.org/content/10.1101/2020.03.30.20047472v2
https://www.medrxiv.org/content/10.1101/2020.03.30.20047472v2
https://arxiv.org/abs/2006.02985
https://arxiv.org/abs/2006.02985


ll
OPEN ACCESS Perspective
30. Jewell, N.P., Lewnard, J.A., and Jewell, B.L. (2020). Caution warranted:
using the Institute for Health Metrics and evaluation model for predicting
the course of the COVID-19 pandemic. Ann. Intern. Med. 173, 226–227.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197035/.

31. Etzioni, R. (2020). Giving models and modelers a bad name. https://
timmermanreport.com/2020/05/giving-models-and-modelers-a-bad-name/.

32. Yao, Y., Vehtari, A., Simpson, D., and Gelman, A. (2018). Using stacking to
average Bayesian predictive distributions. Bayesian Anal. 13, 917–1003.

33. Flaxman, S. (2020). Report 13: Estimating the Number of Infections and
the Impact of Non-pharmaceutical Interventions on COVID-19 in 11 Euro-
pean Countries (Imperial College London). https://www.imperial.ac.uk/
mrc-global-infectious-disease-analysis/covid-19/report-13-europe-
npi-impact/.

34. Vollmer, M.A.C., Mishra, S., Unwin, H.J.T., Gandy, A., Mellan, T.A., Brad-
ley, V., Zhu, H., Coupland, H., Hawryluk, I., Hutchinson, M., et al. (2020).
Report 20: Using Mobility to Estimate the Transmission Intensity
of COVID-19 in Italy: A Subnational Analysis with Future Scenarios (Impe-
rial College London). https://www.imperial.ac.uk/mrc-global-infectious-
disease-analysis/covid-19/report-20-italy/.

35. Zelner, J., Trangucci, R., Naraharisetti, R., Cao, A., Malosh, R., Broen, K.,
Masters, N., and Delamater, P. (2020). Racial disparities in COVID-19mor-
tality are driven by unequal infection risks. Clin. Infect. Dis. 72, e88–e95.
https://doi.org/10.1093/cid/ciaa1723.

36. Stan Forums. (2020). Stan being used to study and fight coronavirus.
https://discourse.mc-stan.org/t/stan-being-used-to-study-and-fight-
coronavirus/14296.

37. Harrell, F. (2020). Sequential Bayesian designs for rapid learning in
COVID-19 clinical trials. https://www.fharrell.com/talk/seqbayes/.
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